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many slides from Phillip Isola, Richard Zhang, Alyosha Efros
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Autoregressive Models
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Recall: we can represent colors as discrete classes



Network output
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Per-pixel classification vs. Autoregressive

● Image colorization: per-pixel classification loss 
● PixelCNN, VQ-VAE2: autoregressive model
● Key idea: it can only produce discrete representation 

(e.g., VQ codes, color bins)
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Autoregressive model

General product rule

The sampling procedure we defined above takes exact samples 
from the learned probability distribution. 

Multiplying all conditionals evaluates the probability of a full joint 
configuration of pixels.



Autoregressive model



Variational Auto-encoder
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Variational Autoencoders (VAEs) 

reconstruction loss KLD loss

close to p(z)

Multi-variate Gaussian

encoder
qψ(z|x)

z = Eµ
ψ(x) + Eσ

ψ(x) · εz generator
pθ(x|z)

x̂ = Gµ
θ (z) +Gσ

θ (z) · ε

||x− x̂||2 KLD(N (Eµ
ψ(x), E

σ
ψ(x)) | N (0, I))

[Kingma and Welling, 2014]

ELBO: Evidence 
Lower Bound



Autoencoders (AEs) 

reconstruction loss 

encoder
qψ(z|x)

z = Eµ
ψ(x) + Eσ

ψ(x) · εz generator
pθ(x|z)

x̂ = Gµ
θ (z) +Gσ

θ (z) · ε

||x− x̂||2
[Hinton and Salakhutdinov, Science 2006]



Autoencoders (AEs) + Easier Sampling

reconstruction loss 

close to p(z)

[Hinton and Salakhutdinov, Science 2006]

KLD loss



Denoising Autoencoders (AEs)

reconstruction loss
corrupt input

[Hinton and Salakhutdinov, Science 2006]

Denoising vs. 
Compression



Variational Autoencoder (VAE)

Variational Bayes



Flow-based Models

19



Bijective: 

Flow-based models

G = f−1f and

- x and z have the same number of dimensions (memory; training speed)
- limited choices of f and G
+ Fast sample; accurate density estimate

[Dinh et al., 2016]



● Density estimate

21
Generator G = f−1

x ∼ pdata(x)

• Sampling

z = f (x)

z ∼ p(z)

x = G(z)

[Dinh et al., 2016]

Flow-based models



● Density estimate

22
Generator G = f−1

x ∼ pdata(x)

• Sampling

z = f (x)

z ∼ p(z)

x = G(z)

[Dinh et al., 2016]

pdata(x) = pz(f (x))| det(
∂f (x)

∂xT
)|

log pdata(x) = log(pz(f (x)))+log(| det(
∂f (x)

∂xT
)|)

Training objective

Easy to compute 
as z follows Gaussian distribution

hard to compute 
Jacobian determinant
for most layers 

Change of variable formula

design layers whose Jacobian
is a triangular matrix

Flow-based models



[Dinh et al., 2016]

Design invertible layers

Jacobian matrix

s, t: affine transformation
with parameters



Real NVP [Dinh et al., ICLR 2017]

Glow [Kingma and Dhariwal, NeurIPS 2018 ]

Flow-based Models



Diffusion Models
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- “destroy” the data by gradually adding 
small amounts of gaussian noise

- “create” data by gradually denoising a 
noisy code from a stationary distribution

Animations from https://yang-song.github.io/blog/2021/score/

Diffusion Models

https://yang-song.github.io/blog/2021/score/
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Denoising Diffusion Models
Learning to generate by denoising

Data Noise

Denoising diffusion models consist of two processes:

• Forward diffusion process that gradually adds noise to input

• Reverse denoising process that learns to generate data by denoising

Forward diffusion process (fixed)

Reverse denoising process (generative)

Sohl-Dickstein et al., Deep Unsupervised Learning using Nonequilibrium Thermodynamics, ICML 2015 
Ho et al., Denoising Diffusion Probabilistic Models, NeurIPS 2020
Song et al., Score-Based Generative Modeling through Stochastic Differential Equations, ICLR 2021 Slide credit: Karsten Kreis et al.



Forward Diffusion Process

Data Noise

The formal definition of the forward process in T steps:

Forward diffusion process (fixed)

x0 x1 x2 x3 x4 … xT

(joint)

19Slide credit: Karsten Kreis et al.



Diffusion Kernel

Data Noise

Forward diffusion process (fixed)

x0 x1 x2 x3 x4 … xT

and

(Diffusion Kernel)

20

Define

For sampling: where

values schedule (i.e., the noise schedule) is designed such that

Slide credit: Karsten Kreis et al.



Mathematic details: Merge Multiple Gaussian

● Reparameterization Trick
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“What are Diffusion Models?” Blog

αt = 1− βt ᾱt =

t∏

i=1

αi



Mathematic details: Merge Multiple Gaussian

● Reparameterization Trick
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xt =
√
αtxt−1 +

√

1− αtεt−1

=
√
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√
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= . . .
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√
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Mathematic details: Merge Multiple Gaussian

● Reparameterization Trick
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Mathematic details: Merge Multiple Gaussian

● Reparameterization Trick
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Mathematic details: Merge Multiple Gaussian

● Reparameterization Trick
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xt =
√
αtxt−1 +

√

1− αtεt−1

=
√
αtαt−1xt−2 +

√

1− αtαt−1ε̄t−2

= . . .

=
√
ᾱtx0 +

√

1− ᾱtε

q(xt|x0) = N (xt;
√
ᾱtx0, (1− ᾱt)I)

Direct sampling from 0 → t 

“What are Diffusion Models?” Blog

αt = 1− βt ᾱt =

t∏

i=1

αi



What happens to a distribution in the forward diffusion?

So far, we discussed the diffusion kernel but what about ?

We can sample by first sampling and then sampling

The diffusion kernel is Gaussian convolution.

xt

q(x0) q(x1) q(x2) q(x3) q(xT)

Diffused Data Distributions

…

Data Noise

Diffused  
data dist.

Input  
data dist.

Diffusion  
kernel

Joint  
dist.

21Slide credit: Karsten Kreis et al.



Generative Learning by Denoising

Recall, that the diffusion parameters are designed such that

Generation:

Sample

In general, is intractable.

Can we approximate ? Yes, we can use a Normal distribution if is small in each forward diffusion step.

xt

q(x1) q(x2) q(x3)

Diffused Data Distributions

…

Iteratively sample

True Denoising Dist.

q(x0)

q(x0|x1) q(x1|x2) q(x2|x3) q(x3|x4)

q(xT)

q(xT-1|xT)

22Slide credit: Karsten Kreis et al.
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Reverse Denoising Process

Data Noise

Formal definition of forward and reverse processes in T steps:

Reverse denoising process (generative)

Trainable network
(U-net, Denoising Autoencoder)

x0 x1 x2 x3 x4 … xT

Slide credit: Karsten Kreis et al.


